- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Davlasheridze, Meri (2)
-
Xu, Chaoran (2)
-
Bricker, Jeremy D (1)
-
Bricker, Jeremy_D (1)
-
Jia, Jianjun (1)
-
Nelson-Mercer, Benjamin T (1)
-
Ross, Ashley D (1)
-
Ross, Ashley_D (1)
-
Son, Seokmin (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Hurricane Ike, which struck the United States in September 2008, was the ninth most expensive hurricane in terms of damages. It caused nearly USD 30 billion in damage after making landfall on the Bolivar Peninsula, Texas. We used the Delft3d-FM/SWAN hydrodynamic and spectral wave model to simulate the storm surge inundation around Galveston Bay during Hurricane Ike. Damage curves were established through the relationship between eight hydrodynamic parameters (water depth, flow velocity, unit discharge, flow momentum flux, significant wave height, wave energy flux, total water depth (flow depth plus wave height), and total (flow plus wave) force) simulated by the model and National Flood Insurance Program (NFIP) insurance damage data. The NFIP insurance database contains a large amount of building damage data, building stories, and elevation, as well as other information from the Ike event. We found that the damage curves are sensitive to the model grid resolution, building elevation, and the number of stories. We also found that the resulting damage functions are steeper than those developed for residential structures in many other locations.more » « less
-
Son, Seokmin; Xu, Chaoran; Davlasheridze, Meri; Ross, Ashley_D; Bricker, Jeremy_D (, Risk Analysis)Abstract In the aftermath of Hurricane Ike in 2008 in the United States, the “Ike Dike” was proposed as a coastal barrier system, featuring floodgates, to protect the Houston‐Galveston area (HGA) from future storm surges. Given its substantial costs, the feasibility and effectiveness of the Ike Dike have been subjects of investigation. In this study, we evaluated these aspects under both present and future climate conditions by simulating storm surges using a set of models. Delft3D Flexible Mesh Suite was utilized to simulate hydrodynamic and wave motions driven by hurricanes, with wind and pressure fields spatialized by the Holland model. The models were validated against data from Hurricane Ike and were used to simulate synthetic hurricane tracks downscaled from several general circulation models and based on different sea level rise projections, both with and without the Ike Dike. Flood maps for each simulation were generated, and probabilistic flood depths for specific annual exceedance probabilities were predicted using annual maxima flood maps. Building damage curves were applied to residential properties in the HGA to calculate flood damage for each exceedance probability, resulting in estimates of expected annual damage as a measure of quantified flood risk. Our findings indicate that the Ike Dike significantly mitigates storm surge risk in the HGA, demonstrating its feasibility and effectiveness. We also found that the flood risk estimates are sensitive to hurricane intensity, the choice of damage curve, and the properties included in the analysis, suggesting that careful consideration is needed in future studies.more » « less
An official website of the United States government
